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1. Introduction

The natural frequencies of circular plates are basic in vibration design. Previous literature has
been reviewed in Refs. [1–3]. The present paper considers the vibration of a circular plate with a
finite, axisymmetric, rigid core attached at the center. If the core has infinite mass, the problem
becomes the vibration of an annulus with a clamped interior edge. However, for finite mass, the
core affects the vibrational frequency through its translational and rotational inertia.
The interaction of a finite core with a supporting membrane was recently delineated by Wang

[4]. It was found that the finite core introduces a slow wobbling mode which is significant for
small-core radii. The purpose of this paper is to investigate whether this interesting phenomena
would extend to the more difficult plate problem.
2. Formulation

Fig. 1(a) shows the cross section in the equilibrium state. The plate has radius R and is firmly
attached to a rigid body of radius bR. The outer edge of the plate may be clamped, simply
supported, free or sliding. The classical plate equation is

Dr4w0 þ r
q2w0

qt2
¼ 0; ð1Þ
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Fig. 1. (a) Cross section of circular plate with a core. (b) Up–down traslational vibration. (c) Anti-symmetric vibration

about a diameter. Half the mid plane of the core is shown tilted at an angle a:
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where w0 is the vertical displacement, D is the flexural rigidity, r is the density of the plate. Eq. (1)
has the solution

w0 ¼ RuðrÞ cosðnyÞeiOt; ð2Þ

where r is the radius normalized by R, n is the number of nodal diameters and O is the frequency.
The function u is a linear combination of the Bessel functions JnðkrÞ; Y nðkrÞ; InðkrÞ; KnðkrÞ;
where

k ¼ R
rO2

D

� �1=4
ð3Þ

represents the square root of the normalized frequency. The radial Kirkhoff shear stress is

V 0 ¼ �
D

R3
q
qr

r2w0 þ
ð1� nÞ

r

q
qr

1

r

q2w0

qy2

� �� �
; ð4Þ

where n is the Poisson ratio. The radial moment is

M 0 ¼ �
D

R2
q2w0

qr2
þ n

1

r

qw0

qr
þ
1

r2
q2w0

qy2

� �� �
: ð5Þ

The axisymmetric finite solid core may vibrate in two modes: an up–down translation and a
wobbly rotation about a diameter. Fig. 1(b) shows the translational mode for which n ¼ 0: It is
seen that the slope of the plate is zero at the boundary r ¼ b: Thus

du

dr
ðbÞ ¼ 0: ð6Þ

The dynamical equation on the core is

2pbRV 0
¼ m

q2w0

qt2
; ð7Þ

where m is the mass of the core and the shear and displacement are evaluated at the boundary. Eq.
(7) is reduced to

2 b
d3u

dr3
ðbÞ þ

d2u

dr2
ðbÞ �

1

b

du

dr
ðbÞ

� �
� sk4uðbÞ ¼ 0; ð8Þ
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where

s �
m

prR2
ð9Þ

is a mass ratio. The conditions for the rotational mode are more difficult. Fig. 1(c) shows the
symmetry plane of the core tilted at an angle a about y ¼ p=2: Continuity in slope gives

du

dr
ðbÞ ¼

uðbÞ

b
: ð10Þ

Balancing the total torque about the rotational axis yields

2

Z p=2

�p=2
V 0b2R2 cos ydy� 2

Z p=2

�p=2
M 0bR cos ydy ¼ I

d2a
dt2

; ð11Þ

where I is the rotational moment of inertia of the core. After some work, Eq. (11) is simplified to

b3
d3u

dr3
ðbÞ � 3b

du

dr
ðbÞ þ 3uðbÞ ¼ Zk4uðbÞ; ð12Þ

where

Z �
I

prR4
ð13Þ

is a moment of inertia ratio. Since a solid body cannot have higher modes, the boundary
conditions for n41 are

uðbÞ ¼ 0;
du

dr
ðbÞ ¼ 0: ð14Þ

Together with the boundary conditions at the edge of the plate, the natural frequencies are then
determined.
3. The clamped plate

The general solution is

uðrÞ ¼ C1JnðkrÞ þ C2Y nðkrÞ þ C3InðkrÞ þ C4KnðkrÞ: ð15Þ

The boundary conditions at the plate edge are

uð1Þ ¼ 0; ð16Þ

du

dr
ð1Þ ¼ 0: ð17Þ

For the translational mode Eqs. (6), (8), (16) and (17) are applied to Eq. (15). The determinant of
the coefficients Cn is set to zero, yielding a transcendental equation in the frequency k. The roots
are found by a simple bisection algorithm. Fig. 2(a) shows the results for the axisymmetric or
n ¼ 0 mode. It is seen that frequency rises with core radius b in bands. There are voids between the
bands where certain frequencies are unrealizable. When s ¼ 1 the effect of the core is equivalent
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Fig. 2. Frequencies of plate with clamped boundary: (a) n=0 mode, (b) n=1 mode. The dashed curve is the n=2 mode.

Dotted curves are from the asymptotic solution Eq. (19).
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to a clamped inner boundary. Our results compare well with the results of the clamped–clamped
annulus (e.g. Ref. [5]). When s ¼ 0 the inner boundary becomes a sliding or movable boundary.
Of interest is the behavior when the core shrinks to a point mass. The characteristic equation is

8½I1ðkÞJ0ðkÞ þ I0ðkÞJ1ðkÞ� � sk2fp½I1ðkÞY 0ðkÞ þ I0ðkÞY 1ðkÞ�

þ 2½J1ðkÞK0ðkÞ � J0ðkÞK1ðkÞ� þ 4=kg ¼ 0: ð18Þ

Thus, for s ¼ 0; the frequencies start at 3.196, 6.306, etc. and for s ¼ 1 the frequencies start at 0,
4.768, 7.871, etc. We mention that the axisymmetric case was considered by Handelman and
Cohen [6], but their computed results seem to be erroneous. The frequencies for the asymmetric
n ¼ 1 mode are shown in Fig. 2(b). Notice that for a finite core the lowest frequency rises
singularly from zero when b ¼ 0: Using Bessel function expansions for small arguments, we find
asymptotically

k �
4

Z ln bj j

� �1=4
: ð19Þ

Therefore, for small core radii, the fundamental frequency may be dominated by a slow wobbly
n ¼ 1 mode. Again, using expansions, we find for non-zero Z that the higher frequencies all rise
singularly from discrete points governed by the roots of

J1ðkÞ½I0ðkÞ þ I2ðkÞ� � I1ðkÞ½J0ðkÞ � J2ðkÞ� ¼ 0: ð20Þ

i.e. 4.525, 7.734, etc.
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4. The simply supported plate

The boundary conditions at the plate edge are zero displacement Eq. (16), and zero
moment

d2u

dr2
ð1Þ þ n

du

dr
ð1Þ � n2uð1Þ

� �
¼ 0: ð21Þ

In this case the Poisson ratio is a factor. The Poisson ratio ranges from 0.2 for concrete, to 0.3 for
metals and 0.4 for polymers. The frequencies for the axisymmetric n ¼ 0 mode are shown in Fig.
3(a). For b ¼ 0 the frequencies are governed by

2n½I1ðkÞJ0ðkÞ þ I0ðkÞJ1ðkÞ� þ k½2I0ðkÞJ0ðkÞ þ I2ðkÞJ0ðkÞ � I0ðkÞJ2ðkÞ� ¼ 0: ð22Þ

Although n is present in Eq. (22), its effect on the frequency is not large. For example, the first
frequency for s ¼ 0 starts at 2.187, 2.222, and 2.253 for n ¼0.2, 0.3, 0.4, respectively. The first
non-zero frequency for s ¼ 1 starts at 3.831, 3.866, and 3.848 for n ¼0.2, 0.3, 0.4, respectively.
Fig. 3(b) shows the n ¼ 1 mode, n ¼ 0:3: The asymptotic form for small b is the same as Eq. (19).
The higher modes start from the roots of

2nfJ1ðkÞ½I0ðkÞ þ I2ðkÞ� � I1ðkÞ½J0ðkÞ � J2ðkÞ�g

þ k½6I1ðkÞJ1ðkÞ þ I3ðkÞJ1ðkÞ � I1ðkÞJ3ðkÞ� ¼ 0; ð23Þ

i.e. 3.729, 6.963, etc for n ¼ 0:3:
Fig. 3. Frequencies of plate with simply supported boundary: (a) n=0 mode, (b) n=1 mode. The dashed curve is the

n=2 mode. Dotted curves are from the asymptotic solution Eq. (19).
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5. The plate with free edge

The edge boundary conditions are zero moment, Eq. (21), and zero shear:

d3u

dr3
ð1Þ þ

d2u

dr2
ð1Þ � ½1þ n2ð2� nÞ�

du

dr
ð1Þ þ n2ð3� nÞuð1Þ ¼ 0: ð24Þ

The results for the axisymmetric modes are shown in Fig. 4(a). There are some major differences
when the outer edge is free. Firstly, unlike Figs. 2(a) and 3(a), a large void exists for low
frequency. For s ¼ 1 the frequency starts from k=1.920, 1.937, 1.953 for n=0.2, 0.3, 0.4,
respectively. The s ¼ 0 curve starts from 2.962, 3.001, 3.036 for the same sequence of n values.
Secondly, the n=2 mode, independent of s and shown by the dashed lines, is significant at low
frequencies (the starting frequencies are 2.378, 2.315 and 2.241, respectively). Note that the
fundamental mode is the n=2 mode for the full plate, while here the fundamental mode depends
on the mass ratio s:
The antisymmetric n=1 mode is shown in Fig. 4(b). Again there is a void region for low k. The

singular rise for the first band is found asymptotically to be independent of n:

k �
2

ln bj j
1=4

1þ
1

4Z

� �1=4
: ð25Þ

Southwell [7] studied the clamped-free plate in the limit of small b, and found a formula equivalent
to Eq. (25) with Z ! 1: The curves for the second band also start singularly, from 4.510, 4.525,
4.539 for n=0.2, 0.3, 0.4, respectively.
Fig. 4. Frequencies of plate with free boundary: (a) n=0 mode, (b) n=1 mode. The dashed curves are the n=2 mode.

Dashed curves are the n=2 mode. Dotted curves are from the asymptotic solution Eq. (25).
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Fig. 5. Frequencies of plate with sliding boundary: (a) n=0 mode, (b) n=1 mode. The dashed curves are the n=2

mode. Dotted curves are from the asymptotic solution Eq. (19).
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6. The plate with a sliding edge

The sliding edge or movable edge is important for moving parts such as piston heads. The
boundary conditions are zero slope, Eq. (17), and zero shear, Eq. (24). Fig. 5(a) shows the n=0
mode which is independent of Poisson’s ratio n: The lowest s ¼ 1 curve starts from 2.233, while
the s ¼ 0 curve starts from 3.832. As in the free-edge case, the n=2 mode is important in
comparison, starting from 2.950, 2.964, 2.977 for n=0.2, 0.3, 0.4, respectively. Fig. 5(b) shows the
n ¼ 1 mode. The frequencies of the first band are much lower than the n ¼ 0 or n ¼ 2 modes that
they would be fundamental modes for all b. For small b the asymptotic formula is given by
Eq. (19). The second band starts from k=1.742, 1.756, 1.769 for the sequence of n0s: The third
band starts from k=5.329 almost independent of n:
7. Conclusions

In this paper, we studied a plate with an attached rigid mass for the first time. The problem
differs from that of the stepped plate since the rigid mass is not thin and has substantial rotary
inertia. Similar to the vibration of a membrane with a rigid core [4], the vibration of a plate with a
rigid core has a slow, antisymmetric wobbly mode and void regions in the frequency-core size
graphs. There are also differences. The plate vibrations are influenced by the edge conditions and
the Poisson’s ratio. The frequencies of the axisymmetric mode of the membrane rise singularly
from zero for small b, while those of the plate are discrete constants when b is zero. On the other
hand, the frequencies of the antisymmetric modes of the membrane rise smoothly, while those of
the plate rise singularly.
Our extensive frequency graphs should be useful in the design of plates supporting central solid

masses.
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